Algorithm Theory - Winter Term 2017/2018 Exercise Sheet 7

Hand in by Monday 14:15, February 5, 2018

The points on this exercise sheet are **bonus points**. Earned points are added to your score but this sheet will not be considered in the maximum number of achievable points. Note the earlier deadline!

Exercise 1: Maximum Coverage

Let X be a set of n elements and let $S = \{S_1, \ldots, S_m\}$ be a system of m subsets $S_1, \ldots, S_m \subseteq X$. For an integer parameter $k \ge 1$, the maximum coverage problem asks for k sets $A_1, \ldots, A_k \in S$ such that $|\bigcup_{j=1}^k A_j|$ is maximized.

The following greedy approximation algorithm starts with $A = \emptyset$ and does k iterations. In iteration j it adds a subset $A_j \in S$ to A (i.e. $A \leftarrow A \cup A_j$) that maximizes $|A \cup A_j|$ in the current step.

Let $O := \bigcup_{j=1}^{k} O_j$ with $O_1, \ldots, O_k \in S$ such that |O| is maximized overall. Let $A^{(i)} = \bigcup_{j=1}^{i} A_j$, be the union of subsets chosen by the greedy algorithm until iteration i (i.e. $A^{(k)} = A$).

(a) Show that for any $i \in \{1, ..., k\}$ it holds that $|O| - |A^{(i)}| \le (1 - 1/k)^i |O|$.

(b) Show that the approximation ratio of the greedy algorithm is larger than $1 - \frac{1}{e}$.¹

Exercise 2: Acyclic Graphs

(10 Points)

Consider the following problem. Given a directed graph G = (V, E), the goal is to determine a maximum cardinality set $E' \subseteq E$ such that the graph induced by E' is acyclic. Provide a $\frac{1}{2}$ -approximation algorithm for this problem. Prove that the approximation ratio is at least $\frac{1}{2}$.

Hint: Considering any set of nodes arbitrarily partitioned into two sets A and B, the set of outgoing edges from A to B induce an acyclic graph as well as the set of outgoing edges from B to A.

(10+3 Points)

¹The constant e is Euler's number.

Exercise 3: Online Vertex Cover

(9+4+4 Points)

Let G = (V, E) be a graph. A set $S \subseteq V$ is called a *vertex cover* if and only if for every edge $\{u, v\} \in E$ at least one of its endpoints is in S. The minimum vertex cover problem is to find such a set S of minimum size.

We are considering the following online version of the minimum vertex cover problem. Initially, we are given the set of nodes V and an empty vertex cover $S = \emptyset$. Then, the edges appear one-by-one in an online fashion. When a new edge $\{u, v\}$ appears, the algorithm needs to guarantee that the edge is covered (i.e., if this is not already the case, at least one of the two nodes u and v needs to be added to S). Once a node is in S it cannot be removed from S.

- (a) Provide a deterministic online algorithm with competitive ratio at most 2. That is, your online algorithm needs to guarantee at all times that the vertex cover S is at most by a factor 2 larger than a current optimal vertex cover. Prove the correctness of your algorithm.
- (b) Show that any deterministic online algorithm for the online vertex cover problem has competitive ratio at least 2.
- (c) Use Yao's principle to show that any randomized online algorithm for the online vertex cover problem has competitive ratio at least 3/2.